Implement Ford-Fulkerson

This commit is contained in:
2025-03-19 15:06:51 +01:00
parent 5680b67d95
commit 5d81549ac0
3 changed files with 164 additions and 15 deletions

View File

@@ -1,13 +1,126 @@
use std::cmp::min;
use std::collections::VecDeque;
use eframe::glow::FALSE;
// Ford-Fulkerson mit DFS zur Berechnung des flusserhöhenden Pfades,
// Edmonds-Karp (also Ford-Fulkerson mit BFS statt DFS),
// Dinic
// Goldberg-Tarjan (auch Preflow-Push oder Push-Relabel genannt).
use random_generator::MaxflowProblem;
use egui_graphs::{Graph, DefaultNodeShape, DefaultEdgeShape};
use petgraph::adj::EdgeIndex;
use petgraph::data::Build;
use petgraph::{Directed, Direction};
use petgraph::stable_graph::EdgeReference;
use petgraph::visit::{Dfs, EdgeRef, NodeRef, VisitMap, Visitable};
use petgraph::stable_graph::{StableGraph, NodeIndex};
mod random_generator;
use crate::random_generator::MaxflowProblem;
use crate::graph::{MaxflowNode, MaxflowEdge};
//mod random_generator;
impl FordFulkerson {
fn solve(problem: MaxflowProblem) -> ???solution??? {
fn available_capacity(edge: EdgeReference<'_, (u64, u64)>) -> u64 {
edge.weight().1 - edge.weight().0
}
// Returns the first augmenting path
fn dfs(graph: &StableGraph<(f32, f32), (u64, u64)>, source: NodeIndex, destination: NodeIndex) -> Option<Vec<NodeIndex>> {
let mut visited = graph.visit_map();
let mut queue = VecDeque::new();
queue.push_back((source, vec![source]));
// main priority queue
while let Some((node, path)) = queue.pop_front() {
let outgoing_edges = graph.edges_directed(node, Direction::Outgoing);
// iterate over all outgoing edges
for edge in outgoing_edges {
let neighbor = edge.target();
if !visited.is_visited(&neighbor) && available_capacity(edge) > 0 {
visited.visit(neighbor);
let mut new_path = path.clone();
new_path.push(neighbor);
// TODO: is this right?
if neighbor == destination {
return Some(new_path);
} else {
queue.push_back((neighbor, new_path));
}
};
}
}
None
}
pub fn ford_fulkerson(mut graph: StableGraph<(f32, f32), (u64, u64)>, source: NodeIndex, sink: NodeIndex) -> StableGraph<(f32, f32), (u64, u64)> {
//let augmenting_path = dfs(graph, source, sink);
// continue while there are augmenting paths
while let Some(path) = dfs(&graph, source, sink) {
// find all edges along the path
let edges: Vec<petgraph::prelude::EdgeIndex> = path.windows(2).map(|w| graph.find_edge(w[0], w[1]).expect("edge not found")).collect();
// find bottleneck capacity along path
let increase_value = edges.iter().fold(u64::MAX, |m, x| {
let edge = graph.edge_weight(*x).expect("edge index not found");
min(m, edge.1 - edge.0)
});
// increase flow with bottleneck capacity along the augmenting path
for edge in edges {
let weight = graph.edge_weight_mut(edge).expect("edge not found");
(*weight).0 += increase_value;
}
}
// return graph with augmented flows
graph
}
pub struct FordFulkerson {
problem: MaxflowProblem,
flows: Graph<(), u64, Directed, u32, DefaultNodeShape, DefaultEdgeShape>,
// alertnatively, use a map from EdgeIndex to flow value
//dfs: Dfs<N, VM>,
}
/* impl FordFulkerson {
fn new(problem: MaxflowProblem) -> S/elf {
Self { problem: problem, flows: Graph::new(StableGraph::default()) }
}
fn graph(&mut self) -> &Graph<bool, (u64, u64)> {
&self.problem.g
}
fn flows(&mut self) -> &Graph<(), u64> {
&self.flows
}
fn dfs(&mut self, ni: NodeIndex) -> Vec<Vec<EdgeIndex>>{
// set own node to visited
self.problem.g.node_mut(ni).expect("node index not found").set_visited(true);
//self.graph().node_mut(ni).expect("node index not found").set_visited(true);
let augmenting_paths: Vec<Vec<EdgeIndex>> = Vec::new();
let neighboring_edges = self.graph().edges_directed(ni, Direction::Outgoing);
for edge in neighboring_edges {
//let neighbor = self.problem.g.node_mut(edge.target()).expect("node index not found");
//if neighbor.visited() == false {
// println!("{:?}", edge.weight());
//}
}
// iterate over all unvisited! neighbors. for each:
// - check if there is capacity left
// - if neighbor = target, return path
// - else, do dfs starting from neighbor
// - if neighbor returns augmenting path add it to own list & prepend own edge
// return list of augmenting paths
augmenting_paths
}
fn step(&self) {
//self.dfs(self.problem.s);
}
} */

33
src/graph.rs Normal file
View File

@@ -0,0 +1,33 @@
//use egui_graphs::{Node, Edge};
use petgraph::graph::{Node, Edge};
pub trait MaxflowNode {
fn visited(&self) -> bool;
fn set_visited(&mut self, b: bool);
}
pub trait MaxflowEdge {
fn remaining_capacity(&self) -> u64;
fn set_capacity(&mut self, c: u64);
}
/* impl MaxflowNode for Node<bool, (u64, u64)> {
fn visited(&self) -> bool {
*self.()
}
fn set_visited(&mut self, b: bool) {
let payload = self.payload_mut();
*payload = b;
}
} */
impl MaxflowEdge for Edge<(u64, u64)> {
fn remaining_capacity(&self) -> u64 {
self.weight.1 - self.weight.0
}
fn set_capacity(&mut self, c: u64) {
self.weight.0 = c;
}
}

View File

@@ -2,15 +2,14 @@ use eframe::{run_native, App, CreationContext, NativeOptions, Frame};
use egui::{CentralPanel, SidePanel, Context};
use egui_graphs::{GraphView, Graph, SettingsStyle, LayoutRandom, LayoutStateRandom};
use algorithms::ford_fulkerson;
use random_generator::MaxflowProblem;
use algorithms::{ford_fulk
//use petgraph::stable_graph::StableGraph;
mod random_generator;
mod algorithms;
mod graph;
pub struct MaxflowApp {
g: Graph<(), u64>,
g: Graph<(f32, f32), (u64, u64)>,
p: MaxflowProblem,
node_count: u64,
max_capacity: u64,
@@ -19,12 +18,13 @@ pub struct MaxflowApp {
impl MaxflowApp {
fn new(_: &CreationContext<'_>) -> Self {
let problem = MaxflowProblem::new(10, 10);
Self { g: problem.g.clone(), p: problem, node_count: 10, max_capacity: 5 }
Self { g: problem.to_gui_graph(), p: problem, node_count: 10, max_capacity: 5 }
}
}
impl App for MaxflowApp {
fn update(&mut self, ctx: &Context, _: &mut Frame) {
ctx.set_theme(egui::Theme::Light);
CentralPanel::default().show(ctx, |ui| {
ui.add(&mut GraphView::<_, _, _, _, _, _, LayoutStateRandom, LayoutRandom>::new(&mut self.g).with_styles(&SettingsStyle::default().with_labels_always(true)));
});
@@ -32,14 +32,17 @@ impl App for MaxflowApp {
.min_width(200.)
.show(ctx, |ui| {
ui.label("node count");
ui.add(egui::DragValue::new(&mut self.node_count).range(1..=1000));
ui.add(egui::DragValue::new(&mut self.node_count).range(2..=1000));
ui.label("maximum capacity");
ui.add(egui::DragValue::new(&mut self.max_capacity).range(1..=10));
ui.add(egui::DragValue::new(&mut self.max_capacity).range(1..=100));
if ui.button("generate graph").clicked() {
let problem = random_generator::MaxflowProblem::new(self.node_count, self.max_capacity);
self.g = problem.g;
self.p = random_generator::MaxflowProblem::new(self.node_count, self.max_capacity);
self.g = self.p.to_gui_graph();
}
if ui.button("run algorithm").clicked() {
let max_flow_graph = ford_fulkerson(self.p.g.clone(), self.p.s, self.p.t);
self.p = MaxflowProblem::from(max_flow_graph, self.p.s, self.p.t);
self.g = self.p.to_gui_graph();
}
});
}